
Universidad CENFOTEC

Maestría en Ingeniería de Software con énfasis en Arquitectura y Diseño

Escuela de Ingeniería de Software

Trabajo Final de Graduación

“ISO/IEC 25000 Criteria in Assessing Cloud Native Application Quality”

Andrés Miranda-Arias

Marzo 2024

Universidad Cenfotec
Carrera de Postgrado

Maestría Profesional en Ingeniería del Software

TRIBUNAL EXAMINADOR

Este proyecto fue aprobado por el Tribunal Examinador de la carrera: Maestría Profesional en
Ingeniería del Software con énfasis en Arquitectura y Diseño de Software, requisito para optar
por el título de grado de Maestría, para el estudiante: Miranda Arias Andrés Felipe.

San José, Costa Rica, 5 de marzo de 2024

M.Sc. Ignacio Trejos Zelaya

Lector 2

M.Sc. Carlos Martín Flores González

Tutor

M.Sc. Juan Daniel Sánchez Cambronero

Lector 1

Firmada digitalmente, de conformidad con la Ley de Certificados, Firmas Digitales y Documentos Electrónicos N° 8454,
destacando el artículo 9°-

CARLOS MARTIN FLORES GONZALEZ (FIRMA)
PERSONA FISICA, CPF-01-1145-0392.
Fecha declarada: 27/03/2024 10:56:36 PM
Razón: Firma de documentos
Lugar: San Jose, Costa Rica Contacto: cflores@ucenfotec.ac.cr

JUAN DANIEL SANCHEZ
CAMBRONERO (FIRMA)

Digitally signed by JUAN
DANIEL SANCHEZ
CAMBRONERO (FIRMA)
Date: 2024.04.03 08:39:10
-06'00'

IGNACIO
TREJOS ZELAYA
(FIRMA)

Firmado digitalmente
por IGNACIO TREJOS
ZELAYA (FIRMA)
Fecha: 2024.04.10
08:59:02 -06'00'

ISO/IEC 25000 Criteria in Assessing Cloud Native
Application Quality

1st Miranda-Arias, Andrés
CENFOTEC University
San José, Costa Rica

amirandaa@ucenfotec.ac.cr

2nd Flores-González, Martı́n
Costa Rica Institute of Technology

Cartago, Costa Rica
cflores@tec.ac.cr

3rd Trejos-Zelaya, Ignacio
Costa Rica Institute of Technology

and CENFOTEC University
San José, Costa Rica
itrejos@ucenfotec.ac.cr

Abstract—Technological updates, upgrades and trends on how
software is developed have led to the introduction of a number
of diverse architectural patterns, practices, and technologies, as
well as to the obsolescence of standards, technology, patterns,
and ways of creating software applications. Microservices archi-
tecture, DevOps, containerization, cloud computing, and many
other new technologies have led to the introduction of Cloud
Native Applications. Nonetheless, one crucial aspect that has
been present regardless of technologies such as programming
languages, or types of software applications, has been software
product quality. This paved the way to the creation of ISO/IEC
9126 Software Product Quality, in 1991, and its successor,
ISO/IEC 25000 System and Software Quality Requirements and
Evaluation (SQuaRE) series in 2005. Our research assesses and
analyzes this latter series of standards, aimed at creating an
enriched version that comprises quality attributes concerning
cloud native applications. After reviewing current literature on
the subject, five different quality attributes were found that could
be adopted into a Cloud Native Application focused ISO/IEC
25000 Standard Series: elasticity, loose coupling, observability,
resiliency and scalability, along with one or more associated
quality measures. The new measures, along with those that were
considered applicable and relevant to the investigation, were
applied to a case study to assess cloud native application quality
with an extended ISO/IEC 25000.

Index Terms—Cloud, Cloud Native, Cloud Native Applications,
Elasticity, ISO, ISO/IEC 25000, Loose Coupling, Microservices,
Observability, Resiliency, Scalability, Software Architecture, Soft-
ware Quality, Software Quality Assessment.

I. INTRODUCTION

Cloud Native Applications (CNAs) have been around for
nearly 20 years in the software development industry. Nowa-
days, users can choose different cloud providers, mainly Ama-
zon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP). The modernization of current technology has
led to an evolution from monolithic architectures to those
organized via microservices, or from a waterfall software
development cycle to agile cycles. All these recent changes
on how software is architected and built has led to, in a
way, an ISO/IEC 25000 standard which contains sections,
or subsections, that can be considered relatively obsolete in
present times.

Introduced in 2005, ISO/IEC 25000 series of standards
serves as an assessment guideline of software product quality,
with five different divisions and several documents within the
entire series. Focusing mainly on quality tied to the software

product itself, eight different quality attributes were selected
and listed on this standard, specifically on the ISO/IEC 25010
document, along with several quality measures associated to
each attribute:

Functional Suitability

Functional Completeness

Functional Correctness

Functional Appropriateness

Performance Efficiency

Time Behaviour

Resource Utilization

Capacity

Compatibility

Co-Existence

Interoperability

Usability

Appropriateness Recognizability

Learnability

Operability

User Error Protection

User Interface Aesthetics

Accessibility

Reliability

Maturity

Availability

Fault Tolerance

Recoverability

Security

Confidentiality

Integrity

Non-Repudiation

Authenticity

Accountability

Maintaibility

Modularity

Reusability

Analysability

Modifiability

Testability

Portability

Adaptability

Installability

Replaceability

TABLE I
SYSTEM/SOFTWARE PRODUCT QUALITY MODEL

Despite the standards being adequate and relevant to the
then current software applications, many concepts have ap-
peared on the software engineering world since 2005. Con-
cepts such as scalability, resiliency, loose coupling, to mention
a few microservices-related characteristics, have been intro-
duced and are not contemplated within the referred standard.
The possibility of upgrading the standard, to include quality
attributes tied directly to cloud native applications, motivated
this investigation, which focuses on analyzing relevant, pub-
lished literature and assessing which quality attributes, if any,
that concern cloud native applications, should be included in
a more current version of the standard.

Several research papers were found and studied in order
to identify the different quality measures that appeared to
be relevant for inclusion into a new release of the ISO/IEC
25000 standard, capable of encompassing cloud native soft-
ware products, or even to be contemplated within development
teams that implement the ISO/IEC 25000 standard within their
software development cycles. As well, an analysis will take
place to come up with valid quality measures for those quality
attributes, following the standards within the ISO/IEC 25000
series, which can be seen in more detail further along. Prior to
this investigation, a delimitation of the entire ISO/IEC 25000
series will take place, in order to select those documents, qual-
ity attributes and quality measures that can directly concern
cloud native based software products. Once this investigation
and evaluation has been done, they will be applied to a
case study in order to assess ISO/IEC 25000 software quality
attributes in a cloud native application, which will be an e-
commerce application arbitrarily chosen.

The results obtained from this case study showed that there
are different metrics that can be applied to any software
product, therefore there can be applications that are “more
cloud native” than others. As well, the overall investigation
shows the necessity for an upgraded ISO/IEC 25000 standard,
since there is an existing pool of quality attributes that are not
mentioned on this 2005 version, maybe even taking the scope
further since this investigation is based solely on cloud native
applications.

It is important to note and clarify that, as part of the investi-
gation, a new proposal of the ISO/IEC 25010 System/Software

Product Quality Model has been found, designed on 2022,
and which, at least at the time of this research, is under
review, but no final updates and/or publications have taken
place yet. Even with the ISO organization working on a new
draft, the relevance of this investigation does not relapse but is
rather boosted, taking into consideration the actual importance
of both cloud native applications and a new version of this
ISO/IEC standard in modern software development. A fully
detailed model can be found later on on section III-C.

This article is organized as follows: sections II provides a
background on Cloud Native Applications, the ISO/IEC 25000
Standard, software product quality attributes, and the concept
of product vs. process quality. Section III describes the related
work in software product quality assessment concerning cloud
native applications, and any findings regarding the investiga-
tion topic. Section IV shows the proposed methodology and
the upgrade proposal for the standard, taking into consideration
the guidelines provided by the documents within the ISO/IEC
25000 series, in order to test within the case study. Section
V shows the evaluation of the proposed quality attributes
applied to a microservices application hosted on Amazon
AWS services. Section VI show the results of said case study
and present the final version of those quality attributes found
that can potentially be added to the standard, concerning
cloud native applications. Finally, section VII show the final
conclusions obtained through the investigation, while section
VIII suggests future research possibilities based on the findings
of this paper.

II. BACKGROUND

A. ISO/IEC 25000: Systems and Software Quality Require-
ments and Evaluation - SQuaRE

Since its foundation in 1947, the International Organization
for Standardization (ISO), has been in charge of developing
international standards and standardization for different indus-
tries. In collaboration with the International Electrotechnical
Commission (IEC), the ISO developed the ISO/IEC 25000
series in 2005, which has the goal of creating a framework
for the evaluation of software product quality [7].

This standard, or series of standards, comprises five different
divisions within the software product quality specification:

- ISO/IEC 2500n: Quality Management Division
- ISO/IEC 2501n: Quality Model Division
- ISO/IEC 2502n: Quality Measurement Division
- ISO/IEC 2503n: Quality Requirements Division
- ISO/IEC 2504n: Quality Evaluation Division
Each division contains one or more standards, or documents,

with a specific objective, related to the software product
quality area that is being analyzed. It is important to emphasize
that there is an additional division, ranging from the ISO/IEC
25050 to ISO/IEC 25099, which “are reserved to be used for
SQuaRE extension International Standards and/or Technical
Reports” [8]. This extension division is made up of seven
documents, however, this specific division is not within the
scope of this investigation.

2

1) ISO/IEC 2500n: Quality Management Division: The
first division of this series of standards contains the Quality
Management Division, within the ISO/IEC 2500n. “The Inter-
national Standards that form this division define all common
models, terms and definitions referred to by all other standards
from the SQuaRE series” [8]. This division is made up of
two documents, 25000 - Guide to SQuaRE, which “pro-
vides the SQuaRE architecture model, terminology, documents
overview, intended users and associated parts of the series as
well as reference models”, and also the 25001 - Planning and
Management document, which “provides requirements and
guidance for a supporting function, which is responsible for
the management of system or software product requirements
specification and evaluation” [8].

2) ISO/IEC 2501n: Quality Model Division: The second
division of this series of standards contains the Quality Model
Division, within the ISO/IEC 2501n. “The International Stan-
dards that form this division present detailed quality models
for systems and software product, quality in use and data” [8].
This division contains itself two documents, first the 25010
- Quality Model document, which “describes the model for
system and software product quality and quality in use”, and
second the 25012 - Data Quality Model document, which
“defines a general data quality model for data retained in a
structured format within a computer system” [8].

3) ISO/IEC 2502n: Quality Measurement Division: The
third division of this series of standards contains the Quality
Measurement Division, within the ISO/IEC 2502n. “The In-
ternational Standards that form this division include a system
and software product quality measurement reference model,
mathematical definitions of quality measures, and practical
guidance for their application” [8]. This division is divided
into five different documents. First, the 25020 - Measurement
Reference Model and Guide, which “presents introductory
explanation and a reference model that is common to qual-
ity measure elements, measures of internal software quality,
external system and software quality and quality in use” [8].
Second, the 25021 - Quality Measure Elements document,
which “presents definitions and specifications of a set of
recommended base and derived measures, which are intended
to be used during the whole system or software development
life cycle” [8]. The third document within this division is
the 25022 - Measurement of Quality in Use1 document, that
“describes a set of measures for measuring quality in use
in terms of characteristics and subcharacteristics defined in
ISO/IEC 25010, and is intended to be used together with
ISO/IEC 25010” [8]. The fourth document is the 25023 -
Measurement of System and Software Product Quality, which
“defines quality measures for quantitatively measuring system
and software product quality in terms of characteristics and
subcharacteristics defined in ISO/IEC 25010, and is intended
to be used together with ISO/IEC 25010” [8]. The fifth and
final document of this division is the 25024 - Measurement of

1Degree to which a product or system can be used by specific users to meet
their needs to achieve specific goals with effectiveness, efficiency, freedom
from risk and satisfaction in specific contexts of use [8]

Data Quality, that “defines quality measures for quantitatively
measuring data in terms of characteristics defined in ISO/IEC
25012” [8].

4) ISO/IEC 2503n: Quality Requirements Division: The
fourth division of this series of standards contains the Quality
Requirements Division, within the ISO/IEC 2503n. “The In-
ternational Standard that forms this division helps specifying
quality requirements” [8]. This division is made up of a single
document, 25030 - Quality Requirements, which “provides
requirements and guidance for the process used to specify
quality requirements, as well as requirements and recommen-
dations for quality” [8].

5) ISO/IEC 2504n: Quality Evaluation Division: The fifth
and final division of this series of standards contains the
Quality Evaluation Division, within the ISO/IEC 2504n. “The
International Standards that form this division provide require-
ments, recommendations and guidelines for product evalua-
tion, whether performed by independent evaluators, acquirers
or developers” [8]. This division is made up of three docu-
ments, the first being the 25040 - Evaluation Process doc-
ument, which “contains requirements and recommendations
for the evaluation of system or software product quality and
clarifies the general concepts” [8]. The second document is the
25041 - Evaluation Guide for Developers, Acquirers and Inde-
pendent Evaluators, which “contains specific requirements and
recommendations for developers, acquirers and evaluators”
[8]. Finally, the last document of this division is the 25045
- Evaluation Modules for Recoverability, that “provides the
specification to evaluate the subcharacteristics of recoverability
defined under the characteristic of reliability of the quality
model” [8].

Given the extension not only of the ISO/IEC 25000 series,
but also of all its five divisions with several documents within,
it is necessary to delimit the scope of the analysis, with relation
to assessing cloud native application quality. This being said,
the following documents will fall within the scope of this
investigation, and will be used, totally or partially, to help
assess quality of cloud native applications:

- ISO/IEC 2501n: Quality Model Division
- ISO/IEC 25010 Quality Model

- ISO/IEC 2502n: Quality Measurement Division
- ISO/IEC 25020 Measurement Reference Model and

Guide
- ISO/IEC 25021 Quality Measure Elements
- ISO/IEC 25023 Measurement of System and Soft-

ware Product Quality
- ISO/IEC 2504n: Quality Evaluation Division

- ISO/IEC 25040 Evaluation Process
The ISO/IEC 25010 Quality Model document defines both

the Quality in Use Model, and also the Product Quality Model.
Both models are defined and developed under the quality
model structure, which defines a quality, which in turn is
composed of several characteristics, which they as well are
composed of subcharacteristics or properties. The Quality in
Use Model “defines five characteristics related to outcomes

3

of interaction with a system [...]. Each characteristic can be
assigned to different activities of stakeholders [...]” [9].

Given that the Quality in Use Model is composed of five
characteristics that directly relate of stakeholder interaction
with the system or software product, which are effectiveness,
efficiency, satisfaction, freedom of risk, and context coverage,
as well as one or more subcharacteristics each, and that do not
directly relate to cloud native application quality, this model
will not be taken into consideration in this investigation.

Nonetheless, the Product Quality Model does directly apply
to the scope, given that this model “categorizes system/-
software product quality properties into eight characteristics:
functional suitability, performance efficiency, compatibility,
usability, reliability, security, maintainability and portability.
[...] The product quality model can be applied to just a
software product, or to a computer system that includes
software, as most of the subcharacteristics are relevant to
both software and systems” [9]. The complete Product Quality
Model, including the eight characteristics and each of their
related subcharacteristics can be seen in table I on section I.

Once again, given the extension of this Product Quality
Model, it will be reduced according to what characteristics,
or subcharacteristics, will be or relevance to the assessing
of cloud native application quality. Those characteristics and
subcharacteristics that will be the base for the assertion are
the following:

- Performance Efficiency
- Time-behaviour: “degree to which the response and

processing times and throughput rates of a product
or system, when performing its functions, meet re-
quirements” [9].

- Resource Utilization: “degree to which the amounts
and types of resources used by a product or system,
when performing its functions, meet requirements”
[9].

- Capacity: “degree to which the maximum limits of
a product or system parameter meet requirements”.2

[9].
- Reliability

- Availability: “degree to which a system, product
or component is operational and accessible when
required for use” [9].

- Fault Tolerance: “degree to which a system, prod-
uct or component operates as intended despite the
presence of hardware or software faults” [9].

- Recoverability: “degree to which, in the event of an
interruption or a failure, a product or system can
recover the data directly affected and re-establish the
desired state of the system” [9].

- Maintainability
- Modularity: “degree to which a system or computer

program is composed of discrete components such

2Parameters can include the number of items that can be stored, the number
of concurrent users, the communication bandwidth, throughput of transactions,
and size of database [9]

that a change to one component has minimal impact
on other components” [9].

- Reusability: “degree to which an asset can be used
in more than one system, or in building other assets”
[9].

- Analysability: “degree of effectiveness and efficiency
with which it is possible to assess the impact on
a product or system of an intended change to one
or more of its parts, or to diagnose a product of
deficiencies or causes of failures to identify parts to
be modified” [9].

- Modifiability: “degree to which a product or system
acn be effectively and efficiently modified without
introducing defects or degrading existing product
quality” [9].

- Testability: “degree of effectiveness and efficiency
with which test criteria can be established for a
system, product or component and tests can be
performed to determine whether those criteria have
been met” [9].

- Portability

- Adaptability: “degree to which a product or system
can effectively and efficiently be adapted for different
or evolving hardware, software or other operational
or usage environments” [9].

Despite there being other characteristics with subcharacter-
istics within the Product Quality Model, such as Functional
Suitability, Compatibility, Usability, and Security, with their
respective subcharacteristics, as well as Maturity as a subchar-
acteristic of Reliability, and Installability and Replaceability
as subcharacteristics of Portability, will not be taken within
the scope since they do not provide relevance to the cloud
native application quality assertion. On a separate note, it is
important to emphasize that cloud native applications might
include more quality characteristics that are not part of the
ISO/IEC 25010 document.

The ISO/IEC 25020 Measurement Reference Model and
Guide document brings into the series the software product
quality measurement reference model. This model “describes
the relationship between a quality model, its associated quality
characteristics (and subcharacteristics), and software product
attributes with the corresponding software quality measures,
measurement functions, quality measure elements, and mea-
surement methods” [10]. This document will work as reference
and guidance on how the assertion of the cloud native appli-
cation quality will be done, it will also provide insights on the
reference model, on selecting software quality measures, and
also on constructing software quality measures.

On another hand, the ISO/IEC 25021 Quality Measure
Elements document provides both guidance to understand how
to measure quality in a software product, and a template to
apply these concepts. The document presents two concepts,
quality measure (QM) and quality measure element (QME).
The first is described as “derived measure that is defined as
a measurement function of two or more values of quality

4

measure elements” [11], while a quality measure element is
defined as “measure defined in terms of a property and the
measurement method for quantifying it, including optionally
the transformation by a mathematical function” [11]. The
template to develop the quality measure elements is used to
properly create and design a QME to provide helpful infor-
mation on the QM. Basically, the quality measure elements
provide a method to quantify quality characteristics, through
the process of developing a QME, which in turn will provide
a measurement function, who in the end will come up with a
quality measure. The entire format for the QMEs can be seen
in section IX-A.

The final document of the Quality Measurement Division
to be considered into the scope will be ISO/IEC 25023
Measurement of System and Software Product Quality. This
document defines the quality of a software product as the
“degree to which it satisfies the stated and implied needs of its
various stakeholders, and thus provides value. [...] The mea-
surable quality-related properties of a system/software product
are called properties to quantify and can be associated with
quality measures. These properties are measured by applying
a measurement method. A measurement method is a logical
sequence of operations used to quantify properties with respect
to a specified scale. The result of applying a measurement
method is called a quality measure element.” [12]. This
particular document will also provide a format for the correct
and precise documentation of the quality measures applied to
a software product, which can be viewed in full in section
IX-B. Finally, this document will also provide a complete
set of measurements, with their respective name, description,
and most importantly, mathematical formula to calculate and
evaluate such measurements, crucial aspect in the assertion
of cloud native application quality. The complete description
and mathematical formula of the quality subcharacteristics and
their measurements can be seen in full in section II-C1.

The last document that will be used and taken into consid-
eration is the ISO/IEC 25040 Evaluation Process document,
from the Quality Evaluation Division. This document presents
the software product quality evaluation reference model, which
basically explains that the evaluation process must take in con-
straints, inputs and resources for the evaluation, and through
such process, outcomes for the evaluation will be obtained
[13]. Additionally, this document will provide the basis for
the software product quality evaluation process, establishing
all the requirements to begin the evaluation process with its
respective documentation to present the results, including how
to specify the evaluation, define requirements, define decision
criteria, designing the evaluation itself, amongst other crucial
aspects.

B. Cloud Native Applications

According to the Cloud Native Computing Foundation
(CNCF), “Cloud native technologies empower organizations
to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds. [...]
These techniques enable loosely coupled systems that are

resilient, manageable, and observable. Combined with robust
automation, they allow engineers to make high-impact changes
frequently and predictably with minimal toil” [1]. In 2015,
the CNCF was founded by the Linux Foundation to support
the open-source community in developing critical cloud-native
components [2].

From this entire cloud native perspective, came cloud native
applications. Such applications are software products which
are built from multiple, small, interdependent services called
microservices. Through this new approach, developers are able
to break large functionalities into smaller microservices, thus
making cloud native applications more agile, since these mi-
croservices work independently and take minimal computing
resources to run [2].

With the introduction of cloud native, microservices, and
cloud native applications into the software industry, the tra-
ditional way of building and developing applications has
changed drastically. Despite this not being the only way
of creating new software products, due to the existence of,
for example, serverless applications, event-driven applications,
and, of course, the traditional monolithic application, cloud
native applications have become more and more popular due to
the benefits they bring to the table. This type of development
will allow for a collaborative approach, and will be highly
scalable on different cloud platforms, giving developers the op-
portunity to heavily automate building, testing, and deploying
cloud native applications, therefore allowing them to focus on
developing functionalities rather than focusing on the CI/CD
aspects of the process.

Cloud native applications also bring a new type of archi-
tecture to the software industry: the cloud native application
architecture. The CNCF lists some key aspects of this archi-
tecture: immutable infrastructure, microservices, declarative
APIs, containers, and service meshes [1]. According to Ama-
zon Web Services (AWS), each concept is defined as follows:

- Immutable Infrastructure: “servers for hosting cloud-
native applications remain unchanged after deployment.
If the application requires more computing resources, the
old server is discarded, and the app is moved to a new
high-performance server” [2].

- Microservices: “small, independent software components
that collectively perform as complete cloud-native soft-
ware. Each microservice focuses on a small, specific
problem. Microservices are loosely coupled, which means
that they are independent software components that com-
municate with each other” [2].

- API: “[communication] method that two or more software
programs use to exchange information. Cloud-native sys-
tems use APIs to bring the loosely coupled microservices
together” [2].

- Service mesh: “software layer in the cloud infrastructure
that manages the communication between multiple mi-
croservices” [2].

- Containers: “smallest compute unit in a cloud-native
application. They are software components that pack the
microservice code and other required files in cloud-native

5

systems. By containerizing the microservices, cloud-
native applications run independently of the underlying
operating system and hardware” [2].

This architecture certainly brings many benefits to devel-
opers and the software industry in general. Given that by
implementing an immutable infrastructure, and thus avoid-
ing manual upgrades and patches, the deployment of cloud
native applications becomes a predictable process. As well,
the implementation of a microservices architecture, will bring
many key aspects as high availability, high fault tolerance,
loosely coupled components, that will continue running and
working despite the eventually potential failure of one or more
components, and also allowing developers to run bug fixes
or patches in one or more microservices, according to the
specific requirements, without having the application down
from production in the meantime [3].

A crucial aspect of cloud native application development
has been the switch in mentality of developers and the tran-
sition from the different development processes, architectures,
infrastructures, and deployment and packaging of applications
throughout the years. This switch from waterfall processes, to
agile methodologies, now into DevOps, or from monolithic
applications into microservices, or from physical on-premises
servers to containers, and finally from on-premises datacenters
to cloud environments has allowed cloud native applications
and development to come to existence and change how appli-
cation development and deployment is done [3].

From an AWS perspective, continuous integration (CI), con-
tinuous development (CD), DevOps, and serverless [comput-
ing] are key and common cloud native development practices
nowadays [2], and define them as follows:

- Continuous Integration (CI): “software practice in which
developers integrate changes into a shared code base fre-
quently and without errors. Small, frequent changes make
development more efficient because you can identify and
troubleshoot issues faster” [2].

- Continuous Delivery (CD): “software practice that sup-
ports cloud-native development. [...] development teams
ensure that the microservices are always ready to be
deployed to the cloud. [...] CI and CD work together for
efficient software delivery” [2].

- DevOps: “software culture that improves the collabora-
tion of development and operations teams. It is a de-
sign philosophy that aligns with the cloud-native model.
DevOps practices allow organizations to speed up the
software development lifecycle” [2].

- Serverless [Computing]: “cloud-native model where the
cloud provider fully manages the underlying server infras-
tructure. [...] the cloud infrastructure automatically scales
and configures to meet the application requirements.
[...] The serverless architecture automatically removes
computes resources when the app stops running” [2].

Taking all these aspects into consideration, cloud native
has brought a new way of developing and deploying software
applications into production environments, making it not only

easier since the development teams do not necessarily need to
focus on all these aspects, but also quicker as well. Certainly,
this new technology and new concept will bring new quality
criteria that may not necessarily be present in those defined
in the system and software product quality model defined by
the ISO/IEC 25010 in section II-A2, for example new terms
like elasticity and resilience, or, on the other hand, quality
criteria that come from a microservices perspective like loosely
coupled components.

C. Quality Attributes of Cloud Native Applications

Given that the first edition of the ISO/IEC 25000 series
predates the introduction of Cloud Native Applications into
the software industry for approximately 10 years, many quality
attributes and characteristics from a more modern software
development world are part of CNA, but are not part of
the Product Quality Model mentioned in the ISO/IEC 25010
document and seen in table I.

Evidently, CNAs includes the quality attributes mentioned
in the ISO/IEC 25010, with all 8 characteristics and their
respective subcharacteristcs being part of these applications.
Nonetheless, with all the technological advances between the
publication of the first edition of the series, and the introduc-
tion of CNA into software development, new quality attributes
have been added as well into the new cloud native applications.
These quality attributes include, as the most common ones,
elasticity, scalability, and resilience, amongst others.

1) Cloud Native Application Quality Attributes within the
ISO/IEC 25010 Scope: Being part of the software develop-
ment industry, cloud native applications can also adhere to
the Product Quality Model described in the ISO/IEC 25010
document [9], by taking into account all the eight quality
characteristics and subcharacteristics described in it. CNAs do,
in fact, take into consideration said characteristics, and can be
measured as described in the ISO/IEC 25023 document [12].

The eight main quality characteristics are functional suit-
ability, performance efficiency, compatibility, usability, relia-
bility, security, maintainability and portability. Each one of
them has one or more subcharacteristics, each with their own
measurement and mathematical formula to quantify them.
Despite all subcharacteristics having their own quantifiable
method, it is important to recall that some of these subcharac-
teristics have been left outside the scope of this investigation,
as stated in the list II-A5 found in section II-A.

With the subcharacteristics chosen to be inside the scope
of this investigation, the mathematical way to quantify them,
according to the ISO/IEC 25023 [12], is separated into cate-
gories, following the characteristic/subcharacteristic(s) format
used in the ISO/IEC 25000 series, with each subcharacteristic
having one or more measurements.

Performance Efficiency:

- Time-behaviour measures: “[...] are used to assess the
degree to which the response and processing times and
throughput rates of a product or system when performing
its functions meet the requirements”.

6

- Mean response time: “how long is the mean time
taken by the system to respond to a user task or
system task”.

X =
∑

i=1→n

(Ai)/n

with Ai being the time taken by the system to
respond to a specific user task or system task at
the i-th measurement, and n being the number of
responses measured.

- Response time adequacy: “how well does the system
response time meet the specified target”.

X = A/B

with A being the mean response time measured by
the formula above, and B being the target response
time specified.

- Mean turnaround time: “what is the mean time taken
for completion of a job or an asynchronous process”.

X =
∑

i=1→n

(Bi −Ai)/n

with Ai being the time of starting a job i, Bi being
the time of completing the job i, and n being the
number of measurements.

- Turnaround time adequacy: “how well does the
turnaround time meet the specified targets”.

X = A/B

with A being the mean turnaround time measured
with the formula above, and B being the target
turnaround time specified.

- Mean throughput: “what is the mean number of jobs
completed per unit time”.

X =
∑
i→n

(Ai/Bi)/n

with Ai being the number of jobs completed during
the i-th observation time, Bi being the i-th ob-
servation time period, and n being the number of
observations.

- Resource utilization measures: “[...] are used to assess the
degree to which the amounts and types of resources used
by a product or system when performing its functions
meet the requirements”.

- Mean processor utilization: “how much processor
time is used to execute a given set of tasks compared
to the operation time”.

X =
∑

i=1→n

(Ai/Bi)/n

with Ai being the processor time actually used to
execute a given set of tasks in observation i, Bi being
the operation time to perform the tasks in observation
i, and n being the number of observations.

- Mean memory utilization: “how much of memory is
used to execute a given set of tasks compared to the
available memory”.

X =
∑

i=1→n

(Ai/Bi)/n

with Ai being the size of memory actually used to
perform a given set of tasks for the i-th sample
processing, Bi being the size of memory available
to perform the tasks during i-th sample processing,
and n being the number of samples processed.

- Mean I/O devices utilization: “how much of I/O
device busy time is used to perform a given set of
tasks compared to the I/O operation time”.

X =
∑

i=1→n

(Ai/Bi)/n

with Ai being the duration of I/O device(s) busy
time to perform a given set of tasks during the i-th
observation, Bi being the duration of I/O operations
to perform the tasks for the i-th observation, and n
being the number of observations.

- Bandwidth utilization: “what proportion of the avail-
able bandwidth is utilized to perform a given set of
tasks”.

X = A/B

with A being the bandwidth of actual transmission
measured over time to perform a given set of tasks,
and B being the bandwidth capacity available to
perform a given set of tasks.

- Capacity measures: “[...] are used to assess the degree
to which the maximum limits of a product or system
parameter meet the requirements”.

- Transaction processing capacity: “how many trans-
actions can be processed per unit time”.

X = A/B

with A being the maximum number of transactions
completed during observation time, and B being the
duration of the observation.

- User access capacity: “how many users can access
the system simultaneously at a certain time”.

X =
∑

i=1→n

Ai/n

with Ai being the maximum number of users who
can simultaneously access the system at i-th obser-
vation, and n being the number of observations.

- User access increase adequacy: “how many users can
be added successfully per unit time”.

X = A/B

with A being the number of users successfully added
during observation time, and B being the duration of
observation.

7

Reliability:
- Availability measures: “[...] are used to assess the degree

to which a system, product or component is operational
and accessible when required for use”.

- System availability: “for what proportion of the
scheduled system operational time is the system
actually available”.

X = A/B

with A being the system operation time actually
provided, and B being the system operation time
specified in the operation schedule.

- Mean down time: “how long does the system stay
unavailable when a failure occurs”.

X = A/B

with A being the total downtime, and B the number
of breakdowns observed.

- Fault tolerance measures: “[...] are used to assess the
degree to which a system, product or component operates
as intended despite the presence of hardware or software
faults”.

- Failure avoidance: “what proportion of fault patterns
has been brought under control to avoid critical and
serious failures”.

X = A/B

with A being the number of avoided critical and
serious failure occurrences (based on test cases), and
B being the number of executed test cases of fault
pattern (almost causing failure) during testing.

- Redundancy of components: “what proportion of
system components is installed redundantly to avoid
system failure”.

X = A/B

with A being the number of system components
redundantly installed, and B being the number of
system components.

- Mean fault notification time: “how quickly does the
system report the occurrence of faults”.

X =
∑

i=1→n

(Ai −Bi)/n

with Ai being the time at which the fault i is reported
by the system, Bi being the time at which the fault
i is detected, and n being the number of faults
detected.

- Recoverability measures: “[...] are used to assess the
degree to which, in the event of an interruption or a
failure, a product or system can recover the data directly
affected and re-establish the desired state of the system”.

- Mean recovery time: “how long does it take for the
software/system to recover from failure”.

X =
∑

i=1→n

Ai/n

with Ai being the total time to recover the downed
software/system and re-initiate operation for each
failure i, and n being the number of failures.

- Backup data completeness: “what proportion of data
items is backed up regularly”.

x = A/B

with A being the number of data items actually being
backed up regularly, and B being the number of data
items requiring backup for error recovery.

Maintainability:
• Modularity measures: “[...] are used to assess the degree

to which a system or computer program is composed of
discrete components such that change to one component
has minimal impact on other components”.

- Coupling of components: “how strongly are the com-
ponents independent and how many components are
free from impacts from changes to other components
in a system or computer program”.

X = A/B

with A being the number of components which
are implemented with no impact on others, and B
being the number of specified components which are
required to be independent.

– Cyclomatic complexity adequacy: “how many soft-
ware modules have acceptable cyclomatic complex-
ity”.

X = 1−A/B

with A being the number of software modules which
have a cyclomatic complexity score that exceeds the
specified threshold3, and B being the number of
software modules implemented.

- Reusability measures: “[...] are used to assess the degree
to which an asset can be used in more than one system
or in building other assets.

- Reusability of assets: “how many assets in a system
can be reusable”.

X = A/B

with A being the number of assets which are de-
signed and implemented to be reusable, and B being
the number of assets in a system.

- Coding rules conformity: “how many modules con-
form to required coding rules”.

X = A/B

with A being the number of software modules con-
forming to coding rules for a specific system, and B
being the number of software modules implemented.

3Such a threshold is used to determine whether a value of cyclomatic
complexity is acceptable or not for each module. This is defined by each
project or organization and is possibly a different value for a programming
language, a type of module or function [12]

8

- Analysability measures: “[...] are used to assess the
degree of effectiveness and efficiency with which it is
possible to assess the impact on a product or system of
an intended change to one or more of its parts, or to
diagnose a product for deficiencies or causes of failure,
or to identify parts to be modified”.

- System log completeness: “to what extend does the
system record its operations in logs so that they are
to be traceable”.

X = A/B

with A being the number of logs that are actually
recorded in the system, and B being the number
of logs for which audit trails are required during
operation.

- Diagnosis function effectiveness: “what proportion
of the diagnosis functions meets the requirements of
causal analysis”.

X = A/B

with A being the number of diagnostic functions
useful for causal analysis, and B being the number
of diagnostic functions implemented.

- Diagnosis function sufficiency: “what proportion of
the required diagnosis functions has been imple-
mented”.

X = A/B

with A being the number of diagnostic functions
implemented, and B being the number of diagnostic
functions required.

- Modifiability measures: “[...] are used to assess the degree
to which a product or system can be effectively and effi-
ciently modified without introducing defects or degrading
existing product quality”.

- Modification efficiency: “how effectively are the
modifications made compared to the expected time”.

X =
∑

i=1→n

(Ai/Bi)/n

with Ai being the total work time spent for making a
specific type of modification i, Bi being the expected
time for making the specific type of modification i,
and n being the number of modifications measured.

- Modification correctness: “what proportion of mod-
ifications has been implemented correctly”.

X = 1− (A/B)

with A being the number of modifications that
caused an incident or failure within a defined period
after being implemented, and B being the number
of modifications implemented.

- Modification capability: “to what extent are the re-
quired modifications made within a specified dura-
tion”.

X = A/B

with A being the number of items actually modified
within a specified duration, and B being the number
of items required to be modified within a specified
duration.

- Testability measures: “[...] are used to assess the degree
of effectiveness and efficiency with which test criteria
can be established for a system, product or component
and tests can be performed to determine whether those
criteria have been met”.

- Test function completeness: “how completely are test
functions and facilities implemented”.

X = A/B

with A being the number of test functions imple-
mented as specified, and B being the number of test
functions required.

- Autonomous testability: “how independently can the
software be tested”.

X = A/B

with A being the number of tests that can be simu-
lated by stub4 among the test which depend on other
systems, and B being the number of tests which
depend on other systems.

- Test restartability: “how easily can the operation test
be carried out from the restart point after mainte-
nance”.

X = A/B

with A being the number of cases in which main-
tainer can pause and restart executing test run at
desired points to check step by step, and B being
the number of cases in which executing test run can
be paused.

Portability:
- Adaptability measures: “[...] are used to assess the de-

gree to which a product or system can effectively and
efficiently be adapted for different or evolving hardware,
software or other operational usage environments”.

- Hardware environmental adaptability: “is software or
system capable enough to adapt itself to different
hardware environment”.

X = 1−A/B

with A being the number of functions which were
not completed or results which were insufficient to
meet requirements during testing, and B being the
number of functions which were tested in different
hardware environment.

- System software environmental adaptability: “is soft-
ware or system capable enough to adapt itself to
different system software environment”.

X = 1−A/B

4A stub is a skeletal or special-purpose implementation of a software
module used to develop or test a module that calls or is otherwise dependent
on it [12].

9

with A being the number of functions which were
not completed or results which were insufficient to
meet requirements during testing, and B being the
number of functions which were tested in different
system software environment.

- Operational environment adaptability: “is software or
system capable enough to adapt itself to different
operational environment”.

X = 1−A/B

with A being the number of functions which were
not completed or results which were insufficient to
meet requirements during operational testing with
user’s environment, and B being the number of
functions which were tested in different operational
environment.

2) Non-ISO/IEC 25010 Quality Attributes of Cloud Native
Applications: With the introduction of cloud technologies into
the software development industry, as well as other concepts
like microservices5, serverless6 computing and others, new
quality attributes have come into appearance. Some of these
new attributes now are part of the non-negotiables in CNAs.

Since CNAs are based off a microservices application
architecture [3], it brings into the scene the quality attributes
a microservices architecture has. Some of these characteristics
include agility, scalability, flexibility (or elasticity), reliability,
availability, observability, resiliency, and loose coupling [19].

Despite some of these characteristics being already part of
the Product Quality Model described on the ISO/IEC 25010
document [9], others are completely out of its scope. Other
authors add some other quality attributes to CNAs, such as
resiliency, but separated into both redundancy and adaptability,
modularity, and scalability is mentioned again too [20], once
again pin-pointing towards the importance of building scalable
software products nowadays.

Finally, a third set of authors added new quality attributes
to CNAs, after creating their own definition of what a cloud
native application is, and they included automation, manage-
ability, observability [and monitoring], containerization, and,
once again, scalability [21].

In summary, several authors through either book or paper
publications [14], [15], [17], [22], [24]–[47], [49], [52]–[54]
have enlisted some of these new quality attributes attached to
the new cloud native applications, and have given definitions of
what each one of these characteristics is. Nonetheless, there
might still not be a way to quantify all these attributes, as
there is with one or more measure per subcharacteristic as
defined in the ISO/IEC 25023 and seen in detail, at least those
characteristics within scope, in section II-C1.

5“Microservices are an architectural and organizational approach to soft-
ware development where software is composed of small independent services
that communicate over well-defined APIs. These services are owned by small,
self-contained teams” [4]

6“A serverless architecture is a way to build and run applications and
services without having to manage infrastructure. [...] You no longer have
to provision, scale, and maintain servers to run your applications, databases,
and storage systems” [5].

Having a definition of each one of these new quality charac-
teristics is just the beginning, since having a way to verify and
validate their presence within cloud native applications is just
as important as knowing what they are. As well, being able
to quantify them, could be through a mathematical formula,
a binary or boolean indicator of their presence or lack of it,
or some other way, leads to knowing if these attributes are
not only present within CNAs, but also works as a way to
determine the level of presence, and even possibly identify
improvement areas.

Being able to define, quantify, verify and validate all
these new quality attributes and characteristics mentioned like
agility, scalability, flexibility, availability, and others, is a
crucial part to eventually modify the ISO/IEC 25000 series
of standards for software product quality to properly include
the technological advances seen in present days not only with
the emergence of new programming languages, frameworks,
or any other advances in either software or hardware, but also
with cloud native applications themselves, with the continued
growth in use in software development.

D. Product vs. Process: The 12 Factor App and Different
Quality Attributes

Despite the main focus of this investigation being solely
on those quality attributes described in the Product Quality
Model, mentioned in the Quality Measurement Division on
section II-A3, particularly on the ISO/IEC 25023 document,
there are other quality attributes that could be related to
the process of development, or to the process of acquiring
and describing the requirements for a software system or
product, similar to that mentioned in the Quality Requirements
Division, on section II-A4.

A clear example of how this can be separated into quality
attributes regarding the product, and quality attributes regard-
ing the process, is the 12 Factor App concept. According to
[58], this is a methodology “for building software-as-a-service
apps that use declarative formats for setup automation, have
a clean contract with the underlying operating system, are
suitable for deployment on modern cloud platforms, minimize
divergence between development and production, and can
scale up without significant changes in tooling”.

This differentiation between product and process quality
attributes can potentially lead to describing and recording sys-
tem or product requirements in a way to ensure the complete
incorporation of the product quality attributes described by the
ISO/IEC series, as well as those that can come up during this
investigation. By doing so, as a previous stage of development,
creating the software requirements in this way will guarantee
that these attributes will not only be present, but will also
adhere to the ISO/IEC standards of software quality.

Going back to the 12 Factor App, those factors mentioned
by the different authors can relate both to product and to
process as well, backing up, in a certain way, the importance
of this differentiation as stated as well in the ISO/IEC 2502n
division and the ISO/IEC 2503n division. These factors are,
as listed in [58]:

10

- Codebase: one codebase tracked in revision control, many
deploys.

- Dependencies: explicitly declare and isolate dependen-
cies.

- Config: store config in the environment.
- Backing services: treat backing services as attached re-

sources.
- Build, release, run: strictly separate build and run stages.
- Processes: execute the app as one or more stateless

processes.
- Port binding: export services via port binding.
- Concurrency: scale out via the process model.
- Disposability: maximize robustness with fast startup and

graceful shutdown.
- Dev/prod parity: keep development, staging, and produc-

tion as similar as possible.
- Logs: treat logs as event streams.
- Admin processes: run admin/management tasks as one-

off processes.
Overall, this separation of attributes into the product and

process categories can lead to potential future work, given
that the main focus of this investigation relies principally on
those quality attributes tied directly to the product, as seen in
the ISO/IEC 2502n division series.

E. Literature Selection Criteria

For our research, various literature sources will be taken
into consideration for analysis. These sources will be taken
from reliable sources, such as published books or papers from
different authors. The main sources of information will be
websites such as Google Scholar, IEEE Digital Library, Core,
AWS, ISO/IEC, amongst others.

The main language to consider sources as valid will be
English, nonetheless, since all authors of this research are
native Spanish speakers, said language will be considered as a
secondary one too. Considering all literature will have credi-
bility from the software engineering and software development
communities, as well as will be obtained from reliable sources,
the main differentiation criteria in terms of selection will be
from the experience and perspectives of the authors, from a
point of view of their academic and professional backgrounds.

This selection of sources has a main goal of reducing, to the
smallest possible degree, the total amount of literature that will
be used, without affecting the overall credibility and reliability
of this investigation, and taking into consideration only those
sources considered relevant to cloud native applications and
software product quality.

The overall research of sources will be carried out through
keywords, were books, research papers, articles, websites,
blogs, amongst others, will be a match, to a lesser or greater
extent, of the main investigation topic, and excluding, evi-
dently, those that do not match or do not contain relevant
information.

After applying these filters and search criteria, different
literature was obtained as basis for our investigation. From
the ISO Organization, the entire ISO/IEC Standards Series

was obtained, and was then granulated to what was con-
sidered relevant to this investigation. As well, from Google
Scholar, IEEE Digital Library, IEEE Xplore, Springer, and
other sources of information, various research papers and
articles were obtained.

Sources such as the Cloud Native Computing Foundation,
Amazon Web Services, RedHat, Google Cloud Platform, Mi-
crosoft Azure, and others, served as sources of definitions.
Finally, books, blogs, and other literature was selected too,
all which were considered relevant sources of information to
our investigation. All sources contemplated and taken into
consideration, to lesser or greater extent, can be seen listed
in section VIII.

III. RELATED WORK

Several studies have been published in the last couple
of years, being mostly created by Robin Lichtenthäler and
Guido Wirtz. These recent studies show the importance of
investigation in the field of cloud native applications in relation
to quality attributes, but not necessarily tied to the ISO/IEC
25010 Product Quality Model.

A. A New Quality Model Specific for Cloud Native Applica-
tions

In 2022, authors Lichtenthäler and Wirtz, came up with sev-
eral research papers revolving around CNAs, quality attributes
and models, as well as ways to validate this new quality model
proposed.

Their research begins with a review of different approaches
for a quality model in the context of CNAs. This initial re-
search paper led to a validations of those different approaches
used in literature, and concluded that “in an early design phase,
surveys and expert interviews are suitable to validate quality
attributes and their relations while for complete quality models
quantitative validations through measures are advised” [18].

Consequently, a proposal for a new quality model for
cloud native applications, “aligned with the Quamoco meta
model and based on both practitioner books and scientific
literature” [14] was established. This model is based off the
ISO/IEC 25010 Product Quality Model as a basic standard for
orientation and familiarity, and is an expansion of said model,
including new quality attributes like scalability, elasticity, and
other attributes mentioned before.

This led them, in collaboration with Fritzsch, to develop
another research paper in which they validated the model
proposed before through the conduction of a questionnaire-
based survey to 42 software professionals, through which they
aimed to update the quality model including these new updates
gained after concluding said survey [15].

B. Current State of ISO/IEC 25010

Since its last publication and release in 2011, the ISO/IEC
25010 document has, as of 2022, began an update process.
This new draft version will include several aspects that might
be related to cloud native applications, however, they are not
strictly tied to CNAs.

11

On his blog post, Dr. Gernot Starke [22], mentions that
“Published in 2011, the ISO 25010 standard on software
product quality lacks pragmatism and practical applicability.
Terms like scalability, deployability, energy efficiency, safety,
or code quality are missing”, and, in reference to the new 2022
draft, states that there is still some “polishing” to do.

Currently, as of October 2023, the ISO/IEC FDIS 25010
Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - Product
quality model document, is under the approval stages, as seen
in the ISO website [23].

C. Current Research vs. Related Work

The recent publication of research articles, as well as the
recent re-evaluation of the ISO/IEC 25010 standard, suggests
and indicates clearly the importance of an eventual restruc-
turing of such Product Quality Model, to finally include key
quality attributes present in modern software development.

Despite the fact of a new ISO/IEC 25010 Product Quality
Model, as seen in table II, which might already include
key quality attributes like scalability, flexibility, availability,
amongst others, there is currently nothing available nor closely
similar to both the ISO/IEC 25010 and ISO/IEC 25023 docu-
ments.

Functional Suitability

Functional Completeness

Functional Correctness

Functional Appropriateness

Performance Efficiency

Time Behaviour

Resource Utilization

Capacity

Compatibility

Co-Existence

Interoperability

Usability

Appropriateness Recognizability

Learnability

Operability

User Error Protection

User Engagement

User Assistance

Self-Descriptiveness

Reliability

Faultlessness

Availability

Fault Tolerance

Recoverability

Security

Confidentiality

Integrity

Non-Repudiation

Accountability

Authenticity

Resistance

Maintaibility

Modularity

Reusability

Analysability

Modifiability

Testability

Flexibility

Adaptability

Scalability

Instalability

Replaceability

Safety

Operational Constraint

Risk Identification

Fail Safe

Hazard Warning

Safe Integration

TABLE II
SYSTEM/SOFTWARE PRODUCT QUALITY MODEL 2022 PROPOSAL

This investigation aims to contribute and eventually expand
the area of knowledge of software development, providing
a combination of both documents mentioned before, thus
delivering an updated version of the Product Quality Model,
as well as providing new characteristics, subcharacteristics,
metrics and formulas to quantify each one of them in the
proposed model.

Being a current focus point in terms of research and
investigation, as cloud native applications and quality attributes
related to them, are right now, reiterates the importance
this topic currently has, thus reinforcing and validating the
scope of this investigation, as well as providing justification
for undergoing this exploratory and empirical work, which
is ultimately aimed at providing a new way in which to
evaluate quality attributes and characteristics of cloud native
applications specifically.

IV. METHODOLOGY & PROPOSAL

The initial proposal to achieve a similar standard as that
defined in both the ISO/IEC 25010 and the ISO/IEC 25023
documents, with the Product Quality Model definition, as well
as the mathematical formulas to quantify each subcharac-
teristic of said model, in those two documents respectively,
includes the identification and definition of the new quality
attributes related to cloud native applications as an initial

12

step. Afterwards, identifying a way to validate and verify the
existence of these attributes, as well as a way to quantify them
and creating the respective documentation will be part of the
methodology of this investigation.

A. Identification & Definition

After having identified the new quality attributes present in
cloud native applications through the work of several authors
and in their published books, as well as other important
characteristics identified in the proposed quality model for
cloud native applications in [14], it is a crucial part to re-list
and define all these characteristics.

1) Elasticity: In physics, elasticity has been defined as “a
material property capturing the capability of returning to its
original state after a deformation” [17]. Related to software
development, elasticity is defined as “the ability to acquire
resources as you need them and release resources when you
no longer need them” [24], basically, this being the ability
to increase your resources and there is a significant increase
in requests, traffic, or any other interaction with servers that
require more resources, and as well the ability of going back
to the original configuration once this peak is over.

The ability of being elastic can apply to many different
resources, depending on the non-functional requirements of
your software product, or on what type of traffic or request
increase your product is meeting. For example, compute or
processing capacity, CPU memory, RAM, I/O bandwidth, or
even storage should be able to be elastic, depending again on
configuration and requirements.

Following the ISO/IEC 25010 definition format, then, and in
agreement with [17], elasticity, in software development, can
be defined as the degree to which a system, product or com-
ponent is able to adapt to workload changes by provisioning
and de-provisioning resources in an automatic manner, such
that at each point in time, the available resources match the
current demand.

2) Loose Coupling: This concept has been part of software
development in more recent years, appearing with different
types of architectures such as microservices or event-driven
architectures. Unlike classic software architectures, loose cou-
pling presents several benefits, since it relies on the indepen-
dence each component has from the others.

Loose coupling can be described as “an approach to inter-
connecting the components in a [...] software application so
that those components [...] depend on each other to the least
extent practicable” [25]. The implementation of such concept
within a software product reduces risks during updates, helps
isolate issues, simplifies testing, amongst others. Being a
crucial concept in cloud computing, as it is as well of course
of software development, the inclusion of loose coupling as
part of the software product quality model is fundamental.

Following the ISO/IEC 25010 definition format, and taking
into consideration the definition of the CNCF [26], loose
coupling can be defined as the degree to which a system or
product is made up of independently built components.

3) Observability: Being able to monitor a software product,
to determine whether it is working as expected, or on any other
case, use this information to take corrective measurements, is a
crucial attribute to have. Without observability, a development
team has no way of determining the state of a software product,
and this, in turn, could be eventually tied to the Functional
Suitability characteristic defined in the Product Quality Model
in the ISO/IEC 25010.

Aspects like CPU usage time, memory, disk space, API
response times, amongst other factors, can be monitored to
allow a potential maintenance team or development team to
achieve expected outcomes from this product.

Following the ISO/IEC 25010 definition format, and taking
into consideration the definition provided by the CNCF [27],
observability can be defined as the degree to which a system,
product, or component can generate actionable insights, allow-
ing users to understand its state from external outputs, and, if
needed, take corrective action.

4) Resiliency: Withstanding or recovering from tough times
and difficulties, is an ability many people wish they had,
and, as strange as it may seem, software products - or at
least their designers and developers - would like to have this
characteristic too.

Software products are not exempt of failure, errors or
malfunctioning. This can be due to several factors, including,
but not limited to, code bugs, hardware or software failures,
or insufficient resources.

According to [30], “a system is resilient if it continues
to carry out its mission in the face of adversity”. Despite
how well the product might be designed and engineered, at
some point, something, somewhere, can and most probably
will malfunction, causing errors to the product; if the product
is resilient, or has resiliency, it will keep on working despite
this eventual errors.

Following the ISO/IEC 25010 definition format, and in
agreement with [30], resiliency can be defined as the degree
to which a system, product, or component can rapidly and
effectively protect its critical capabilities or functionalities
from disruption caused by adverse events and conditions.

5) Scalability: Similar to elasticity, but different in some
ways, scalability is another crucial factor to consider when
building cloud native applications. As mentioned above in
section IV-A1, elasticity mainly refers to how fast a software
product can scale both up and down, depending on demand.
Scalability, on another hand, refers to how the system can
handle increased loads of traffic, requests, or others [28].

According to [29], scalability can be defined as “the mea-
sure of a system’s ability to increase or decrease in perfor-
mance and cost in response to changes in application and
system processing demands”.

Therefore, following the ISO/IEC 25010 definition format,
and taking as base the definition provided by the Gartner
Glossary [29], scalability can be defined as the degree to which
a system, product, or component, can increase or decrease in
performance and cost, in response to changes in application
and system processing demands.

13

B. Quantification, Validation & Verification

After having identified and defined the proposed quality
attributes in the section above (section IV-A), they can now be
analyzed to develop ways in which to quantify, validate and
verify them. In order to do this, it is first necessary to validate
the implementation, given that these quality attributes can be
present in different ways within cloud native applications.
Similar to the quality measures defined by the ISO/IEC 25023
in section II-C1, these new quality attributes will have a quality
measure, following the format described in annex IX-B.

1) Elasticity: Referring back to the definition provided in
section IV-A1, elasticity can be defined as “the degree to which
a system, product or component is able to adapt to workload
changes by provisioning and de-provisioning resources in
an automatic manner, such that at each point in time, the
available resources match the current demand”. This being
said, elasticity is a non-negotiable in cloud native application
development, and these applications must be designed to be
elastic. This basically means, again, that they can and must
scale up or down according to changes in demand of resources.

According to [31], cloud native applications can achieve
elasticity “through the use of auto-scaling and load-balancing
techniques. Auto-scaling allows the application to automati-
cally scale up or down based on predefined metrics, while load
balancing distributes incoming traffic across multiple instances
of the application”. In summary, this statement defines how
elasticity should be implemented on a cloud native application,
and the key aspect of it is the automatization of elasticity.
Despite the fact that applications can manually scale up or
down, as well as can be manually routed to different instances
according to incoming traffic, cloud native applications must
be enabled to do all this automatically, without the requirement
of someone monitoring the application server and turning on
and off these options.

After defining the how in terms of implementation, it is
important to quantify elasticity in a cloud native application,
following the quality measure format defined in annex IX-B.
The following quality measure was either directly taken from
or developed from the following sources [17], [24], [28], [31]–
[33].

- Elasticity measures: are used to assess the degree to
which a system, product or component is able to adapt
to workload changes by provisioning and de-provisioning
resources in an automatic manner.

- Elasticity Index (EEi-1-G): how quickly can a sys-
tem, product or component scale up or down in an
automatic manner, in response to changes in resource
demands.

X =
A

B

with A being the number of resources added or
removed, and B being the time taken to add or
remove resources, and where a higher elasticity index
would indicate a more elastic system, product, or
component.

2) Loose Coupling: Having defined loose coupling in sec-
tion IV-A2 as the degree to which a system or product is made
up of independently built components, this quality attribute is
another non-negotiable in cloud native applications. Having
a common background and coming from a mixture of a
microservices pattern architecture, modularity, and even con-
tainerization, implementing loosely coupled services is crucial
in cloud native applications, and can be done through the
segregation of functionalities, and, according to [34], it can be
implemented through several ways, including, but not limited
to, the use of schemas, shared data for APIs, asynchronous
communication, separated environments, amongst others.

Once again, having defined a way in how to implement
loose coupling in a cloud native application, quality measures
can be defined. The following quality measure has been taken,
in part or in total, from the following references [25], [31],
[35]–[38].

- Loose Coupling measures: are used to assess the degree
to which a system or product is made up of independently
built components.

- Coupling Factor (LCf-1-G): how interconnected or
interdependent are the components of a system or
product.

X =
A

B

with A being the number of inter-component depen-
dencies, and B being the total number of components
within the system or product, and where a lower cou-
pling factor would indicate a more loosely coupled
system or product.

3) Observability: As defined in section IV-A3, observabil-
ity is the degree to which a system, product, or component
can generate actionable insights, meaning that the degree to
which the system, product, or component can automatically
generate logs to show the state and functioning it is at.
This logs can work as metrics to trigger different responses
according to what is being measured, for example, increasing
or decreasing processing power or total number of processing
units depending on demand, through elasticity, or indicate
errors in the functionality of different APIs, to mention a few.

According to [31], observability, in cloud native applica-
tions, is directly tied to a monitoring and measuring of both
performance and health of an application in real time, and
this can be achieved through monitoring, logging, and tracing
tools. It is important to note that cloud providers have their
own services to do this, for example, AWS’s CloudWatch
service. Now, despite a cloud native application being able to
log something, it is necessary to monitor relevant information
and to be able to quantify how “measureable” is the application
in terms of monitoring. This can be done with the following
quality measures, developed through the references found in
[39]–[44].

- Observability measures: are used to assess the degree
to which a system, product, or component can generate
actionable insights.

14

- Log Coverage (OLc-1-G): what percentage of the
system or product’s states are covered by logs.

X =
A

B

with A being the total number of components that are
logged, and B being the total number of components
within the system or product, where a higher log
coverage would indicate a more observable system.

- Log Completeness (OLc-2-G): how complete are the
logs generated by the system or product.

X =
A

B

with A being the total number of states logged, and
B being the total number of states, where a higher
log completeness would indicate a more observable
system.

4) Resiliency: Another non-negotiable quality attribute
identified for cloud native applications is resiliency. Defined
as the degree to which a system, product, or component
can rapidly and effectively protect its critical capabilities or
functionalities from disruption caused by adverse events and
conditions in section IV-A4, it is important to design resilient
applications when creating a CNA.

The ability of recovering from failures and continuing
operation without interruption can be achieved through the use
of distributed architectures and the implementation of fault-
tolerant mechanisms, as [31] suggests. Distributed architec-
tures will ensure the continuous operation of a system or
product even if one or more components fail, while the use or
implementation of fault-tolerant mechanisms will ensure the
CNA can recover from potential failures without data loss or
downtime.

In order to quantify resiliency in cloud native applications,
the following quality measures were developed with input
from the following references [45]–[50].

- Resiliency measures: are used to assess the degree to
which a system, product, or component can rapidly and
effectively protect its critical capabilities or functionali-
ties from disruption.

- Resiliency Ratio (RR-1-G): how well can a system
or product recover from failures.

X =
A

B

with A being the number of successful recoveries,
and B being the total number of failures, where a
higher resiliency ratio would indicate a more resilient
system.

- Mean Time to Recovery (RMr-2-G): what is the
average time it takes for the system or product to
recover from failures.

X =
∑

i=1→n

(Ai)/n

where Ai is the time it takes to recover from the i-
th failure, and n being the total number of failures,
where a lower mean time to recovery would indicate
a more resilient system.

5) Scalability: Last but certainly not least, scalability has
been identified through this investigation as one final crucial
non-negotiable in cloud native applications. Arguably the
most important quality attribute of a CNA, scalability has
been defined as the degree to which a system, product, or
component, can increase or decrease in performance and cost,
in response to changes in application and system processing
demands in section IV-A5.

Once again, the automatization behind scalability in cloud
native applications is determining, given that a system or
product can manually scale after a stakeholder can enable this
option. Nonetheless, similar to elasticity in section IV-B1, it
has to be done automatically depending on changing demands
on the application’s resources.

According to [51], this scalability in cloud native appli-
cations can be achieved and implemented through several
considerations, including but not limited to the implementa-
tion of horizontal scaling rather than vertical scaling7, avoid
defaulting to physical servers and rather taking advantage of
cloud services and providers, avoiding unnecessary bottlenecks
through caching, non-blocking I/O calls, load balancing and
redundancy.

In a final way to quantify scalability in a cloud native ap-
plication, the following quality measures have been developed
through consideration of the following references [52]–[57].

- Scalability measures: are used to assess the degree to
which a system, product, or component, can increase or
decrease in performance and cost, in response to changes
in application and system processing demands

- Scalability Coefficient (SSc-1-G): how well can a
system or product handle an increase in load, traffic,
or requests.

X =
A

B

with A being the top performance value at an in-
creased load state, and B being the top performance
value at a baseline load state, and where a higher
scalability coefficient would indicate a more scalable
system.

- Resource Utilization Ratio (SRu-2-G): what amount
of resources are utilized compared to the amount of
resources allocated during scaling.

X =
A

B

with A being the total number of resources being
utilized, and B being the total number of resources
allocated during scaling, and where a higher resource

7Vertical scaling refers to scaling by adding more resources, while Hori-
zontal scaling refers to scaling by adding more nodes to a distributed network
[51].

15

utilization ratio would indicate a more scalable sys-
tem.

V. CASE STUDY: HOW CLOUD NATIVE CAN AN
APPLICATION REALLY BE?

After having evaluating the different sources and literature
available as seen in section II-E, and coming up with different
quality attributes as well as the quality measure to quantify
them respectively, a combination of the Product Quality Model
(those chosen and described in section II-C1) and these new
attributes can be done to evaluate CNAs. Are there applications
out there that are “more cloud native” than others? In order to
determine to what extent can software systems or products be
truly cloud native, to a greater or lesser degree, it is necessary
to apply these quality measures selected and evaluate the
results, doing so in a case study.

Taking into consideration costs of hosting cloud native
applications in a cloud provider, time to develop the applica-
tion regardless of its functionalities, and other aspects of the
software development cycle, an application has been arbitrarily
selected, after considering different software products publicly
available for academic use, as a case study to evaluate to what
extent can an application really be cloud native, according
to the quality attributes chosen. In this particular case study
evaluation, the selected software product to test is the “Sock
Shop”8 application, created by 55 different contributors listed
on the GitHub repository [59], owned by WeaveWorks and
Container Solutions [60].

As mentioned on [60], “Sock Shop simulates the user-facing
part of an e-commerce website that sells socks. It is intended
to aid the demonstration and testing of microservice and cloud
native technologies”. In order to get valuable, real results,
and despite having access to the complete source code, no
code modifications will be done, this with the idea of not
manually altering the results and doing an as-is software
product evaluation with the quality attributes and respective
quality measures selected.

The architecture of this e-commerce application is based
on microservices, as the name suggests, and can be seen in
detail on figure 1. In synthesis, this architecture is made up of
six different microservices: Order, Payment, User, Catalogue,
Cart, and Shipping. The Order microservice is written with
a Java and .NET Core combination, Payment, User and
Catalogue are written with Go, Cart is written in Java, all
with a MongoDB database, and the Shipping microservice is
written in Java. As well, there is a queue implemented using
RabbitMQ, with a Queue-Master service written in Java.

According to [60], “the architecture of the demo microser-
vices application was intentionally designed to provide as
many microservices as possible [...]. [...] the microservices
are roughly defined by the function in an e-commerce site.
[...] All the services communicate using REST over HTTP.”

8The complete source code for Sock Shop can be found at
https://github.com/microservices-demo/microservices-demo, while its com-
plete documentation can be directly found at https://microservices-
demo.github.io/.

Fig. 1. Sock Shop Architecture [59]

Each microservice has its own API implementation using an
API Gateway pattern, with different endpoints respectively.

A. Testing Environment and APIs

To test this Sock Shop application, an Amazon ECS con-
tainer was created, and the application was provisioned as de-
scribed in the documentation [61]. Other hosting possibilities,
listed as well on the repository internal documentation, are
a local machine, Kubernetes, Docker, Apcera, among others,
however, due to familiarity, and following the cloud native
application idea, it was hosted on AWS on ECS using the
Docker images provided on the code repository. It is important
to clarify that, given that the microservices are handled as
Docker images, the resources allocated for each microservice
cannot be determined individually.

As far as the APIs included in this application goes, there
are several endpoints on the services listed above. Given the
extent of the application, the services to be tested were arbitrar-
ily chosen, and, taking into consideration that each service runs
as its own, independent microservice, they can be considered
a single responsibility application. These APIs chosen are:
Catalogue, Orders, and Payment. They were chosen based on
the fact that an e-commerce application relies mostly on the
catalogue of products it will advertise to users, since if there
are no products shown, there is nothing to sell. As well, in
order to purchase products, users must be able to place orders
and pay for their items, so these three APIs and their endpoints
are thought to be crucial in any e-commerce application.

Note that the base URL for each endpoint will vary de-
pending on where the application is hosted. For the sake of
example, the localhost URL will be implemented to display
the different endpoints, despite the fact that for testing, the
application was hosted on AWS. The different services contain
the following endpoints, as seen on table III:

16

Catalogue Service

[GET] http://127.0.0.1/catalogue/
[GET] http://127.0.0.1/catalogue/{id}/
[GET] http://127.0.0.1/catalogue/size/
[GET] http://127.0.0.1/tags/

Payment Service

[GET] http://127.0.0.1/health/
[POST] http://127.0.0.1/paymentAuth/

Orders Service

[GET] http://127.0.0.1/orders/
[POST] http://127.0.0.1/orders/

TABLE III
ENDPOINTS OF SERVICES CHOSEN FOR TESTING

VI. RESULTS

In order to test and simulate traffic to the Sock Shop website,
the documentation includes a testing section where scripts
are provided which will hit the different endpoints and APIs
selected, associated to those microservices chosen. To execute
these tests, they provide the generic Docker command, which
must be updated depending on where the front-end is running,
meaning IP address and port. Once again, for illustration
purposes, the localhost address will be used. The command
to be executed is the following:

docker run --net=host weaveworksdemos/
load-test -h localhost

After testing, through the triggering of different HTTP
requests of the different endpoints listed on table III, the
following quality measures9 were considered, according to the
scope of the investigation:

- Performance Efficiency Quality Measures
- Mean Response Time
- Response Time Adequacy
- Mean Turnaround Time
- Turnaround Time
- Mean Throughput
- Mean Processor Utilization
- Mean Memory Utilization
- Mean I/O Devices Utilization
- Bandwidth Utilization
- Transaction Processing Capacity
- User Access Capacity

9The complete list, definition, and mathematical formula for their respective
quantification can be found on section II-C for the ISO/IEC 25010 defined
quality attributes, and those proposed in this investigation can be seen in full
detail on section IV.

- User Access Increase Adequacy
- Reliability Quality Measures

- System Availability
- Mean Down Time
- Failure Avoidance
- Redundancy of Components
- Mean Fault Notification Time
- Mean Recovery Time
- Backup Data Completeness

- Maintainability Quality Measures
- Coupling of Components
- Cyclomatic Complexity Adequacy
- Reusability of Assets
- Coding Rules Conformity
- System Log Completeness
- Diagnosis Function Effectiveness
- Diagnosis Function Sufficiency
- Modification Efficiency
- Modification Correctness
- Modification Capability
- Test Function Completeness
- Autonomous Testability
- Test Restartability

- Portability Quality Measures
- Hardware Environmental Adaptability
- System Software Environmental Adaptability
- Operational Environment Adaptability

- Elasticity Quality Measures
- Elasticity Index

- Loose Coupling Quality Measures
- Coupling Factor

- Observability Quality Measures
- Log Coverage
- Log Completeness

- Resiliency Quality Measures
- Resiliency Ratio
- Mean Time to Recovery

- Scalability Quality Measures
- Scalability Coefficient
- Resource Utilization Ratio

Apart from evaluating the case study, the final results of this
evaluation, an “ISO/IEC 25000++ Series10” standard, will be
also described in this section.

A. Sock Shop Case Study

After evaluating the tests that were provided by the same
developers, different results were obtained. The command
provided has four different flags that can be passed to the
execution, and alter some parameters of the tests. The −h
flag sets the host to run the tests against, the −c flag sets the
amount of concurrent clients hitting the different endpoints, or

10This is not an official name, but rather simply a reference to the C/C++
naming idea.

17

at least simulates this; it is defaulted to 2 concurrent users. The
−r flag sets the total amount of requests made, and is defaulted
to 100 requests. Finally, the −d flag specifies a delay before
hitting the endpoints.

Since the main focus of this investigation is not to validate
the existing ISO/IEC 25000 criteria, but rather to test the
proposed additional criteria, individual tests were not carried
out, but rather took the results from the script given to
users by the developers. Different combinations of users and
requests were made, with the average one being the following
command, with 500 requests and 100 different concurrent
users.

docker run --net=host weaveworksdemos/
load-test -h localhost -r 500 -c 100

The previous command will generate random users, with
different names, and start hitting the general application with
requests. Overall, the average results for the selected endpoints
were the following:

Catalogue Service

Average request response time: 3.148ms

Payment Service

Average request response time: 3.720ms

Orders Service

Average request response time: 2.367ms

TABLE IV
AVERAGE RESPONSE TIMES OF SERVICES CHOSEN FOR TESTING

This information can be visualized through another service
provided by the developers in charge of Sock Shop, through
the following command, used to validate container health, and
monitor the overall requests:

docker-compose -f ./deploy/docker
-compose/docker-
compose.monitoring.yml up -d

The Prometheus service, and Graphana service, can be
accessed locally at the following addresses respectively:

Prometheus http://localhost:9090
Grapaha http://localhost:3000

Overall, the general ISO/IEC 25000 metrics could show that
the application works, and has relatively good response times,
can handle concurrent users and also simultaneous requests.
However, these metrics can all by applied to any type of
application, not necessarily to cloud native applications only.

The additional metrics, proposed in this investigation, apply
specially to cloud native applications, and can be seen in this
case study.

In terms of the fist quality measure, elasticity, the elasticity
index for the Sock Shop application shows the following
results. Since there is no option to dynamically add or remove
resources depending on requests, but rather uses defined re-
sources, regardless of were is the application running. For this

elasticity quality measure, Sock Shop could either be a non-
applicable case, or rather score a zero, since it has no elasticity
whatsoever. It is important to point out, nonetheless, that elas-
ticity attribute could be provided to the application through a
manual setup, thus complying with this criteria. However, this
manual implementation goes against that automation wanted
in cloud native applications.

The next proposed quality measure is loose coupling, which,
since the application was developed using microservices,
should be a good scoring metric. The proposed quantification
method for loose coupling was the following X = A

B , with
A being the number of inter-component dependencies, and
B the total number of components. In this case, there are a
total of 15 different components within the entire Sock Shop
Application, with the only dependencies being the services
tied directly to their database, thus having 4 different inter-
component dependencies. As a result, this gives a coupling
factor of 0.267, and based on the definition for this quality
measure, it would suggest a good loose coupling.

In terms of observability, there are two different quality
measurements proposed. The first, log coverage, determines
the total number of components that are logged or registered
against the total number of components, were a result closer
to 1 determines a better result. Sock Shop handles this pretty
well, as all services have their respective logs, therefore giving
a log coverage result of 1. The second quality measurement is
log completeness, logging not the components themselves but
rather their states. In this particular scenario, the services of
Sock Shop, being Docker containers, are tied to the visibility
given by Docker, so Sock Shop once again scores a perfect
1, since the container status of each microservice is always
logged.

Next, resiliency is once again a rather complicated measure
to test out, without having overall control of the application,
but rather only the Docker images to create it. The first quality
measurement is the resiliency ratio, but with the inability of
causing the application to fail and recover, this cannot be tested
out. Consequently, the second quality measurement, mean time
to recovery, cannot be tested out either.

Finally, the last quality measure proposed is scalability,
where two different quality measurements were proposed
too: first, the scalability coefficient, and second the resource
utilization ratio. The first measurement is tied to how well can
an application handle an increase in load, traffic, or requests.

The scalability coefficient takes the performance of the
application at an increased load state, and the top performance
at a baseline load state. For the baseline load state, the default
values were used, with 10 requests and 2 concurrent users. For
the increased load state, without really knowing when will the
application break, become slow, or require to scale, this was
more of a trial and error situation, which ended up in using
1, 000, 000 requests with 100, 000 users, trying to simulate a
relatively busy e-commerce site; these numbers might be far
off from a company like Amazon, or any other e-commerce
giant, but try to simulate a small to mid size e-commerce site.

As a result, this ended up giving an average top performance

18

value at a baseline load state of 25.782ms, and an average top
performance value at an increased load state of 22.497ms. This
gives a result of 0.873, which indicates that the application is
capable of handling such loads, but overall performance starts
to decrease as a result of increased requests, users or traffic.
Unfortunately, for the resource utilization ratio, since there is
no visibility over the resource allocation or utilization, this
quality measurement cannot be calculated for this Sock Shop
case study.

Overall, results show that Sock Shop was well designed,
being able to handle increased loads of requests, concurrent
users and traffic, thus suggesting it is a scalable system. The
microservices have observability and can log their state, as
well as register any information derived from requests, again
indicating an observable system. As far as loose coupling
goes, the proposed architecture used a microservices approach,
this tied to the idea that cloud native applications must use a
microservices architecture approach, indicates that Sock Shop
is a loosely coupled system. Finally, as far as elasticity goes,
unfortunately, this case study does not provide the required
information to actually determine if it is an elastic system or
not. Nonetheless, with the intention of determining the current
state of the application, without intervening the code or similar,
the results are as realistic as possible.

B. Cloud Native Application ISO/IEC 25000++ Series

After a thorough investigation of reliable sources of in-
formation, as defined in section II-E, the proposed quality
measures to a potential ISO/IEC 25000++ Series, with their
respective quality measurements, are the following:

Elasticity

Elasticity Index

Loose Coupling

Coupling Factor

Observability

Log Coverage

Log Completeness

Resiliency

Resiliency Ratio

Mean Time to Recovery

Scalability

Scalability Coefficient

Resource Utilization Ratio

TABLE V
PROPOSED QUALITY MEASURES AND THEIR RESPECTIVE QUALITY

MEASUREMENTS

The proposal of these quality measures, their quality mea-
surements and ways to quantify, validate and verify them, will
lead to a potential ISO/IEC 25000 standard series that takes
into consideration new quality attributes and characteristics
that have come into existence since 2005, when the standard
was first published. All these new concepts not only show

how technology has advanced, but also how standards, in some
cases, have failed to keep on evolving with technology.

Given that there is a new ISO/IEC 25010 document being
written and evaluated at the time of this investigation, shows
how relevant the idea of adding new quality attributes, or re-
organizing the current software product quality model is right
now, thus validating our investigation too. In addition to a new
draft being worked on, different books, articles and research
papers evaluated as literature reinforces too this importance,
not necessarily tied only to cloud native applications, but to
new software product quality attributes in general.

The identification, definition, quantification, validation and
verification of software product quality attributes, analyzed in
section IV, is of great value and relevance to this ongoing
discussion of updating the ISO/IEC 25000 Standards Series,
since it has taken into account various different literature
sources, and adapted them into an ISO/IEC 25000 format,
providing a starting point for this new updated version.

VII. CONCLUSIONS

The results obtained, from both the investigation conducted,
and the applied quality attributes proposed, to the Sock Shop
case study, show the relevance of this topic in today’s software
development and software engineering communities. The ne-
cessity of architecting and building software applications and
programs through a microservices, serverless, event-driven,
or any other architectonic pattern, had led to new quality
attributes that did not exist back in the days where monolithic
architectures were the dominant style.

Consequently, the growth not only of applications, but
their needs and capabilities of supporting large number of
concurrent users, high traffic loads, and high processing power,
to mention a few, has led to the need of scalable, elastic,
and resilient software applications. Cloud native has been
introduced as a solution, not necessarily the only one, but as
a definitely good approach in solving these new requirements.

Our investigation shows the relevance of updating and
upgrading software product quality attributes in new, current
software applications, and how this can be taken from theory
into practice through the implementation of this guideline in
the Sock Shop case study.

The application of this guideline, despite Sock Shop being
a software application designed for academic purposes, shows
how key information can be obtained to model and potentially
refactor applications according to business requirements and
real life situation needs. This proposed standard can help
to determine if the software application, regardless of the
business area it will help, will suffice to satisfy those needs,
or if it will require a more elastic, or more scalable, or a more
loosely coupled architecture, to mention a few software quality
attributes identified through our research.

The different limitations and restrictions of the ISO/IEC
25000 Standard Series, as described by [22], suggest that a
change must be done, not only to any potential new additions
in terms of quality attributes and/or measurements, but also to
the existing ones.

19

As described in [23], the new version of the Product Quality
Model, ISO/IEC 25010:2023 is already on the way, at least
to the day of inquiry. This means that new quality attributes
will already be taken into consideration, as suggested, at least
in theory, in this investigation, though the quality attributes
and quality measurements will not be the same, at least
considering the new model described in [22]. Some of those
quality measures, however, such as scalability, have been taken
into account and will be included in this new version of the
Software Product Quality Model. Nonetheless, other quality
attributes, such as elasticity, loose coupling, or resiliency,
which were considered relevant in our investigation, are not
even mentioned or added in the new draft.

Overall, there is a clear necessity for a new version of
this Product Quality Model, but believing it will take into
account every quality attribute that has come to surface in
the last 20 years is unreal. Software development has come a
long way, new programming languages have been developed,
new frameworks have been developed, new architectures, new
concepts, and many different things have been developed over
the past 20 years. But, what has happened to standards, guides,
and assessment criteria?

At least from an ISO/IEC 25000 perspective, it has been left
behind in comparison to those developments. On the same
hand, the fact that there is a new draft of this model on
the making, shows the crucial necessity for updating these
guidelines and standards.

Cloud native applications will continue to be present in
software development. Their low cost benefits, their SaaS
approaches, and every other benefit provided to development
teams and organizations, regardless of the cloud provider
chosen, makes them attractive to the software development
world. This being said, is there a clear necessity for a quality
assessment guideline? The true answer is, it could depend. A
small, family owned business, for example, might not be as
thorough and strict with software quality as big enterprises, but
these standards and guidelines do not target small applications
but rather large applications that deal with thousands, or even
millions of users and therefore must be scalable, must be
elastic, must provide good performance levels at both baseline
loads and increased loads; in summary, must be compliant with
an ISO/IEC 25000 quality level.

Can an application be more cloud native than others?
Certainly, yes. An application might not even be cloud native
at all, since business requirements will vary and depend on the
project’s nature itself. Regardless, with the current dominance
cloud native applications have on the market, the overall
question of the need of an updated and refactored ISO/IEC
25000 Standard Series version could have been answered, and
leads to a new idea: if the ISO/IEC 25000 Standard Series is,
to a lesser or greater extended, outdated, what is the current
situation of companies, organizations, or event governmental
institutions that implement these kinds of standards, or even
those that do not follow, to any extent, these same software
product quality standards?

VIII. FUTURE WORK

Once the new version of the ISO/IEC 25010 Product Quality
Model has been published, a revision of it must be done to
validate if cloud native application quality attributes have been
taken into consideration, and if so, to what extent. This will
determine if a true, significant contribution to the standard was
made, or if it still has some limitations and shortcomings.

On a separate note, and circling back to the Product vs.
Process idea described on section II-D, a potential new re-
search could take place, leading to a contribution where a
guideline can be made. Through this guideline, a new way
of defining and describing requirements, at both a functional
and non-functional way, can conduct to ensuring the proper
implementation of all the quality attributes described both in
the ISO/IEC 25000 series, at least at its current version, and
also those proposed in this investigation.

REFERENCES

[1] “Cloud Native Definition”. Cloud Native Computing Foundation.
https://www.cncf.io/about/who-we-are/ (accessed Oct. 1, 2023).

[2] “What is Cloud Native?”. AWS. https://aws.amazon.com/what-is/cloud-
native/ (accessed Oct. 1, 2023).

[3] “What is Cloud Native?”. OCI. https://www.oracle.com/cloud/cloud-
native/what-is-cloud-native/ (accessed Oct. 1, 2023).

[4] “Microservices”. AWS. https://aws.amazon.com/microservices/ (ac-
cessed Oct. 2, 2023)

[5] “Building Applications with Serverless Architectures”. AWS.
https://aws.amazon.com/lambda/serverless-architectures-learn-more/
(accessed Oct. 2, 2023)

[6] “Understanding cloud-native applications”. RedHat.
https://www.redhat.com/en/topics/cloud-native-apps (accessed Oct.
1, 2023).

[7] “The ISO/IEC 25000 series of standards”. ISO 25000.
https://iso25000.com/index.php/en/iso-25000-standards (accessed
Sep. 27, 2023).

[8] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE, ISO/IEC
25000:2014, 2014.

[9] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality
models, ISO/IEC 25010:2011, 2011.

[10] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Measurement reference model
and guide, ISO/IEC 25020:2007, 2007.

[11] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Quality measure elements,
ISO/IEC 25021:2012, 2012.

[12] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Measurement of system and
software product quality, ISO/IEC 25023:2016, 2016.

[13] Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Evaluation process, ISO/IEC
25040:2011, 2011.

[14] R. Lichtenthäler, and G. Wirtz. “Towards a Quality Model for Cloud-
native Applications”, In: Montesi, F., Papadopoulos, G.A., Zimmer-
mann, W. (eds) Service-Oriented and Cloud Computing. ESOCC
2022. Lecture Notes in Computer Science, vol. 13226, pp. 109-117,
Apr. 2022. doi: 10.1007/978-3-031-04718-3 7. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-04718-3 7

[15] R. Lichtenthäler, J. Fritzsch, and G. Wirtz. “Cloud-Native
Architectural Characteristics and their Impacts on Software
Quality: A Validation Survey”, 2023 IEEE Conference on Service-
Oriented System Engineering (SOSE), Athens, Greece, 2023, pp.
9-18, doi: 10.1109/SOSE58276.2023.00008. [Online]. Available:
https://ieeexplore.ieee.org/document/10254764

20

[16] K. Durr, and R. Lichtenthäler. “An Evaluation of Modeling
Options for Cloud-Native Application Architectures to Enable
Quality Investigations”, In: 2022 IEEE/ACM 15th International
Conference on Utility and Cloud Computing (UCC), Vancouver,
WA, USA, 2022, pp. 297-304, doi: 10.1109/UCC56403.2022.00053.
[Online]. Available: https://www.computer.org/csdl/proceedings-
article/ucc/2022/608700a297/1LvAcBXTLEY

[17] N. Herbst, S. Kounev, and R. Reussner. “Elasticity in Cloud
Computing: What It Is, and What It Is Not”, In: Proceedings
of the 10th International Conference on Autonomic Computing
(ICAC 2013), San Jose, CA, USA, 2013. [Online]. Available:
https://sdq.kastel.kit.edu/publications/pdfs/HeKoRe2013-ICAC-
Elasticity.pdf

[18] R. Lichtenthäler, and G. Wirtz. “A Review of Approaches for Quality
Model Validations in the Context of Cloud-native Applications”, In: J.
Manner, D. Lübke, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp (eds)
14th ZEUS Workshop, ZEUS2022, Bamberg, Germany, 2022. [Online].
Available: https://ceur-ws.org/Vol-3113/paper6.pdf

[19] B. Scholl, T. Swanson, and P. Jausovec. Cloud Native: Using Containers,
Functions, and Data to Build Next-Generation Applications, 1st ed.
Sebastopol, CA: O’Reilly Media Inc, 2019.

[20] C. Davis. Cloud Native Patterns: Designing change-tolerant software,
1st ed. Shelter Island, NY: Manning Publications Co, 2019.

[21] K. Indrasiri, and S. Suhothayan. Design Patterns for Cloud Native Ap-
plications: Patterns in Practice Using APIs, Data, Events, and Streams,
1st ed. Sebastopol, CA: O’Reilly Media Inc, 2021.

[22] G. Starke. “Shortcomings of ISO 25010”. innoq.com.
https://www.innoq.com/en/articles/2023/02/iso-25010-shortcomings/
(accessed Oct. 16, 2023).

[23] ISO. “ISO/IEC FDIS 25010 Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - Product
quality model”, iso.org. https://www.iso.org/standard/78176.html (ac-
cessed Oct. 16, 2023).

[24] AWS. “Elastic”. docs.aws.amazon.com.
https://docs.aws.amazon.com/whitepapers/latest/reactive-systems-
on-aws/elastic.html (accessed Oct. 23, 2023).

[25] P. Kirvan. “Loose Coupling”. techtarget.com.
https://www.techtarget.com/searchnetworking/definition/loose-coupling
(accessed Oct. 23, 2023).

[26] CNCF. “Loosely Coupled Architecture”. glossary.cncf.io.
https://glossary.cncf.io/loosely-coupled-architecture/ (accessed Oct.
23, 2023).

[27] CNCF. “Observability”. glossary.cncf.io.
https://glossary.cncf.io/observability/ (accessed Oct. 23, 2023).

[28] N. Peleg. “Elasticity vs. Scalability AWS”. cloudrice.co.il.
https://www.cloudride.co.il/blog/elasticity-vs.-scalability-aws (accessed
Oct. 23, 2023).

[29] Gartner Glossary. “Scalability”. gartner.com.
https://www.gartner.com/en/information-technology/glossary/scalability
(accessed Oct. 23, 2023).

[30] D. Firesmith. “System Resilience: What Exactly is it?”.
insights.sei.cmu.edu. https://insights.sei.cmu.edu/blog/system-resilience-
what-exactly-is-it/ (accessed Oct. 23, 2023).

[31] Noor. “6 Key Features Of A Cloud-Native Applications”.
techbullion.com. https://techbullion.com/6-key-features-of-a-cloud-
native-applications/ (accessed Nov. 7, 2023).

[32] T. Telang. “Cloud-Native Application Development”, In: Beginning
Cloud Native Development with MicroProfile, Jakarta EE, and Kuber-
netes, Berkeley, CA, 2022, doi: 10.1007/978-1-4842-8832-0 2. [On-
line]. Available: https://link.springer.com/chapter/10.1007/978-1-4842-
8832-0 2.

[33] W. Ai, K. Li, S. Lan, F. Zhang, J. Mei, K. Li, and R. Buyya.
“On Elasticity Measurement in Cloud Computing”, In: Scientific Pro-
gramming, vol 2016 doi: 10.1155/2016/7519507. [Online]. Available:
https://www.hindawi.com/journals/sp/2016/7519507/.

[34] J. Simpson. “How to Design Loosely Coupled Microservices”.
nordicapis.com. https://nordicapis.com/how-to-design-loosely-coupled-
microservices/ (accessed Nov. 7, 2023).

[35] J. Wang. “Cloud Computing and Cloud Native Systems Lecture 18 Loose
Coupling”. [Online]. Available: http://www.ece.iit.edu/ jwang/ece473-
2023f/ece473-lec18.pdf

[36] S. Kaushik. “Microservices - What Is Loose Coupling?”. alibaba-
cloud.com. https://www.alibabacloud.com/blog/microservices—what-is-
loose-coupling 597007 (accessed Nov. 7, 2023).

[37] C. Feling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications, 1st ed. Vienna, Austria: Springer Vienna, 2014.

[38] C. Richardson. “Designing loosely coupled services”. microservices.io.
https://microservices.io/post/microservices/2020/12/14/designing-
loosely-coupled-services.html (accessed Nov. 7, 2023).

[39] J. Kosinska, B. Balis, M. Konieczny, M. Malawski and S. Zielin-
ski, “Toward the Observability of Cloud-Native Applications: The
Overview of the State-of-the-Art,” In IEEE Access, vol. 11, pp. 73036-
73052, 2023, doi: 10.1109/ACCESS.2023.3281860. [Online]. Available:
https://ieeexplore.ieee.org/document/10141603

[40] S. Gittlen. “Observability is key to cloud-native transitions
and modern application development”. about.gitlab.com.
https://about.gitlab.com/blog/2022/04/05/observability-is-key-to-cloud-
native-transitions-and-modern-application-development/ (accessed Nov.
7, 2023).

[41] R. Shah. “Observability for Cloud-Native Applications”. code-
burst.io. https://codeburst.io/observability-for-cloud-native-applications-
cd7cf866514e (accessed Nov. 7, 2023).

[42] A. Rodriguez. “Take a quantitiave approach
to cloud application architecture”. ibm.com
https://www.ibm.com/cloud/architecture/architecture/practices/quantitative-
approach-to-cloud-app-architecture/ (accessed Nov. 7, 2023).

[43] B. Doerrfeld. “The State of Cloud-Native Observability Tools”. cloud-
nativenow.com. https://cloudnativenow.com/features/the-state-of-cloud-
native-observability-tools/ (accessed Nov. 7, 2023).

[44] B. Gangapadhyay. “Observability in Cloud-Native Applications”.
[Online]. Available: https://www.happiestminds.com/wp-
content/uploads/2020/11/Observability-in-Cloud-Native-
Applications.pdf.

[45] S. Barve, and R. Shinde. “A Four-Step Approach to Verifying
the Resiliency of Cloud-Native Applications”. ibm.com.
https://www.ibm.com/blog/a-four-step-approach-to-verifying-the-
resiliency-of-cloud-native-applications/ (accessed Nov. 8, 2023).

[46] Nix United. “Cloud Native Architecture - Basics You Need
To Know”. nix-united.com. https://nix-united.com/blog/cloud-native-
architecture-basics-you-need-to-know/ (accessed Nov. 8, 2023).

[47] R. Vettor, D. Pine, D. Coulter, M. Wenzel, and S. Smith. “Cloud-
native resiliency”. learn.microsoft.com. https://learn.microsoft.com/en-
us/dotnet/architecture/cloud-native/resiliency (accessed Nov. 8, 2023).

[48] Google Cloud.“Google Cloud Architecture
Framework: Reliability”. cloud.google.com.
https://cloud.google.com/architecture/framework/reliability (accessed
Nov. 8, 2023).

[49] L. Atchison. “Do Cloud-Native Architectures Make Apps More Re-
liable?”. cloudnativenow.com. https://cloudnativenow.com/features/do-
cloud-native-architectures-make-apps-more-reliable/ (accessed Nov. 8,
2023).

[50] N. Gerne, A. Dundurao, R. J. Jafarkhani, and F. Valles.
“The new era of resiliency in the cloud”. mckinsey.com.
https://www.mckinsey.com/capabilities/mckinsey-digital/our-
insights/the-new-era-of-resiliency-in-the-cloud (accessed Nov. 8,
2023).

[51] Concepta. “The Dos and Don’ts of Scalable Architecture”.
conceptatech.com. https://www.conceptatech.com/blog/dos-donts-
designing-scalable-architecture (accessed Nov. 8, 2023).

[52] A. Al-Said, and P. Andras. Scalability analysis comparisons of
cloud-based software services, “In: Journal of Cloud Computing”,
vol 8, 2019, doi: 10.1186/s13677-019-0134-y. [Online]. Available:
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-
019-0134-y.

[53] M. Bhandaru. “Cloud-Native AI Workloads: Scalabil-
ity, Sustainability and Security”. cloudnativenow.com.
https://cloudnativenow.com/features/cloud-native-ai-workloads-
scalability-sustainability-and-security/ (accessed Nov. 8, 2023).

[54] R. Fellows, and M. Rabin. Massively Scalable Cloud
Storage for Cloud Native Applications. 2019. [On-
line]. Available: https://www.evaluatorgroup.com/wp-
content/uploads/2020/09/Cloud Native Application Storage final3.pdf.

[55] VMWare. “What is Cloud Scalability?”. vmware.com.
https://www.vmware.com/topics/glossary/content/cloud-scalability.html
(accessed Nov. 8, 2023).

21

[56] IBM. “Nonfunctional requirements: A checklist”. ibm.com.
https://www.ibm.com/cloud/architecture/architecture/practices/nonfunctional-
requirements-checklist (accessed Nov. 8, 2023).

[57] M. Abbott, and M. Fisher. The Art of Scalability - Scalable Web
Architecture, Processes, and Organizations for the Modern Enterprise,
1st ed. Boston, MA: Pearson Education Inc, 2009.

[58] “The Twelve-Factor App”. 12factor.net. https://12factor.net/ (accessed
Nov. 24, 2023).

[59] “microservices-demo”. github.com. https://github.com/microservices-
demo/microservices-demo (accessed Nov. 20, 2023).

[60] “Sock Shop”. github.io. https://microservices-demo.github.io/ (accessed
Nov. 20, 2023).

[61] “Sock Shop”. github.io. https://microservices-
demo.github.io/docs/index.html (accessed Nov. 20, 2023).

[62] “Amazon EC2”. aws.amazon.com. https://aws.amazon.com/ec2/instance-
types/ (accessed Nov. 20, 2023).

IX. ANNEX

A. Table Format of QMEs

The following information is taken textually from the
ISO/IEC 25021 document, and includes the required details
on how to properly “define and/or design a QME to provide
necessary or helpful information” [11].

- QME Name: A QME should have a unique name and
should be identified with a serial number, if necessary.
Most of the time it begins with “number of... (ratio
scale)”.

- Target entity: A QME shall have a target object that is to
be characterized by measuring its property. Target entity
should be a work product or behavior of a system, soft-
ware, or stakeholders such as users, operators, developers,
testers, or maintainers.

- Objectives and property to quantify: Identification of a
property to quantify is usually related to the name of the
QME. Selected property to quantify should be the one
which is most relevant to the measurement of information
needed. [...].

- Relevant quality measure(s): Reference to specific quality
measure(s) which use this QME shall be specified.

- Measurement method: Measurement method explains
how to collect data and how to transform it to a value
quantifying the property through a numerical rule.

- List of sub properties related to the property to quantify
(optional): An identified property to quantify can be
related to different sub propertied, if necessary. This
relationship between properties should be expressed as
a schema or a formula. This constitutes the measurement
method model.

- Definition of each sub property (optional): If there is a list
of sub properties, each sub property should be defined.

- Input for the QME: The input shall be described in
enough detail to identify what quantitative information
is used to measure the QME. Any sources providing the
input should also be identified such as the documented
work products, behavior of systems and software, or
human behavior of users, operators, developers, testers,
or maintainers.

- Unit of measurement for the QME: The unit of measure-
ment and, if appropriate, the formula used.

- Numerical rules: A numerical assignment rule shall be
described from a practitioner view (generally a text
form) or from a theoretical point of view (generally a
mathematical expression).

- Scale type: Scale type shall be identified. [...] could be
nominal, ordinary, interval or ratio.

- Context of QME: This gives information about the in-
tended use of the measurement results.

- Software life cycle process(es): The typical appropriate
life cycle process(es) that are suited for actual measure-
ment of this QME with respect to a target entity should
be identified here

- Measurement constraints (optional): If necessary, any
constraints related to the measurement method should be
described.

B. Format Used for Documenting the Quality Measures

The following information is taken textually from the
ISO/IEC 25023 document [12], and provides the required
details to properly define a Quality Measure.

- ID: identification code of quality measure; each ID con-
sists of the following three parts:

- abbreviated alphabetic code representing the quality
characteristics as capital X and subcharacteristics as
one capital X followed by lowercase x (for exam-
ple, “PTb” denotes “Time behaviour” measures for
“Performance efficiency”);

- serial number of sequential order within quality
subcharacteristic;

- G (Generic) or S (Specific) expressing potential
categories of quality measure; where, Generic mea-
sures can be used whenever appropriate and Specific
measures could be used when relevant in a particular
situation;

- Name: quality measure name;
- Description: the information provided by the quality

measure;
- Measurement function: mathematical formula showing

how the quality measure elements are combined to pro-
duce the quality measure.

22

